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 
Abstract—These FPGAs have become dominant part of 

embedded systems, it is imperative to consider their security as 

a whole. It provides a state-of-the-art description of security 

issues on FPGAs, both from the system and implementation 

perspectives. We discuss the advantages of reconfigurable 

hardware for cryptographic applications, show potential 

security problems of FPGAs, and provide a list of open research 

problems. Moreover, we summarize both public and 

symmetric-key algorithm implementations on FPGAs. 

 
IndexTerms— Security, cryptography, reconfigurable 

hardware, AES, FPGA. 

I. INTRODUCTION 

FPGAs are becoming integral parts of embedded systems 
and many embedded applications require security 
mechanisms because of their very nature, it is imperative to 
consider security on FPGAs as a whole. Applications will be 
wireless making the need for security and privacy preserving 
mechanisms genuine. The configurability of FPGAs offers 
major advantages when using them for cryptographic 
applications. We need to know the suitability of FPGAs for 
security applications from a systems point of view and test 
the resistance of FPGAs to physical or system attacks, which, 
in practice, pose for a greater danger than algorithmic attacks. 
The first part of this paper is devoted to studying FPGAs 
from a systems security perspective. We do this by looking at 
attacks documented in the literature against FPGAs as well as 
attacks that have been performed against other hardware 
platforms and by adapting them and their solutions to FPGAs. 
We provide a list of open problems regarding system security 
of FPGAs. The second part of this work makes an attempt to 
organize the vast literature on FPGA cryptographic algorithm 
implementation according to the different hard mathematical 
problems on which the cryptographic primitives are based. In 
addition, taking performance (both area and throughput) as a 
measure of different implementations reported in the 
literature, we make recommendations as to which methods 
are best suited to implement cryptographic algorithms on 
FPGAs. The rapid progress in speed and integration density 
of commercial FPGAs increase advantages of FPGAs for  
cryptographic applications. Possible attacks are presented 
with possible counter measures against the attacks. We 
discuss possible metrics to be used to compare the FPGA  
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algorithm implementations. We also attempt to list open 
problems regarding security applications in which FPGAs are 
used. 
 

II SYSTEM ADVANTAGES OF FPGAS FOR 
CRYPTOGRAPHIC APPLICATIONS 

 
In this section, we list potential advantages of 

reconfigurable hardware (RCHW) in cryptographic 
applications.  

Algorithm Agility: This term refers to the switching of 
cryptographic algorithms during operation of the targeted 
application. Widely held of modern security protocols, such 
as SSL or IPsec, is algorithm independent and allow for 
multiple encryption algorithms. The encryption algorithm is 
negotiated on a per-session basis and a wide variety may be 
required. Eg. IPsec allows among others DES, 3DES, 
Blowfish, CAST, IDEA, RC4 and RC6 as algorithms, and 
future extensions are possible. Advantages of algorithm 
independent protocols are:  

a) Ability to delete broken algorithms 
b) Choose algorithms according to certain (e.g. personal) 

preferences  
c) Ability to add new algorithms. Algorithm agility is 

expensive with old-style hardware. FPGAs canbe 
reprogrammed in real time. 

Algorithm Upload: It is perceivable that fielded devices 
are upgraded with a new encryption algorithm. A reason for 
this could be that the product has to be compatible to new 
applications. From a cryptographically point of view, 
algorithm upload can be necessary because a current 
algorithm was broken. E.g., Data Encryption Standard (DES) 
made by Federal Information Processing Standards, a 
standard expired. A new standard was created Advanced 
Encryption Standard - AES by U.S. Department of 
Commerce/National Institute of Standard and Technology 
and/or that the list of ciphers in an algorithm independent 
protocol was extended. Assuming there is some kind of 
(temporary) connection to a net-work such as the Internet, 
FPGA-equipped encryption devices can upload the new 
configuration code.  

Architecture Efficiency: In certain cases, hardware 
architecture can be much more efficient if it is designed for a 
specific set of parameters. Parameters for cryptographic 
algorithms can be for example the key, the underlying finite 
field, the coefficient used (e.g., the specific curve of an ECC 
system), and so on. Generally speaking, the more specific an 
algorithm is implemented the more efficient it can become. 
An efficient parameter-specific implementation of the 
symmetric cipher IDEA is with fixed keys and operation of 
constant multiplication which is far more efficient than a 
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general modular multiplication. Another example taken from 
asymmetric cryptography is the arithmetic architectures for 
Galois fields. These architectures tend to be more efficient if 
the field order and irreducible polynomial are fixed. Squaring 
in GF (2m) takes m=2 cycles with a general architecture, but 
only one cycle if the architecture is compiled for a fixed field. 
Notice that squaring in GFis one of the most common 
operations when implementing elliptic curve cryptosystems 
defined over fields of characteristic two. FPGAs allow this 
type of design and optimization with specific parameter set. 
Due to the nature of FPGAs, the application can be changed 
totally or partially. 

Resource Efficiency: The majority of security protocols 
are hybrid protocols, e.g. IPSec, SSL and TLS. This implies 
that a public-key algorithm is used to transmit the session key. 
After the key was established a private-key algorithm is 
needed for data encryption. Since the algorithms are not used 
simultaneously, the same FPGA device can be used for both 
through run-time reconfiguration. 

Algorithm Modification: There are applications which 
require modification of standardized cryptographic 
algorithms by using proprietary S-boxes or permutations. 
Such modifications are easily made with RCHW. One 
example, where a standardized algorithm was slightly 
changed, is the UNIX password encryption where DES is 
used 25 times in a row and a 12-bit salt modifies the 
expansion mapping. It is also attractive to customize block 
cipher such as DES or AES with proprietary S-boxes for 
certain applications.  

Throughput: General-purpose CPUs are not optimized for 
fast execution especially in the case of public-key algorithms. 
Mainly because they lack instructions for modular arithmetic 
operations on long operands. Modular arithmetic operations 
include for example exponentiation for RSA and 
multiplication, squaring, inversion, and addition for elliptic 
curve cryptosystems (ECC). FPGA implementations have the 
potential of running substantially faster than software 
implementations. The block cipher AES, exemplarily, 
reaches a data rate of 112.3 Mbit/s and 718.4 Mbit/s on a DSP 
TI TMS320C6201 and Pentium III respectively. In 
comparison, the FPGA implementation of the same 
algorithm on a Virtex XCV-1000BG560-6 achieved 12 
GBit/s using 12,600 slices and 80 RAMs.  

Cost Efficiency: There are two cost factors, that have to be 
taken into consideration, when analyzing the cost efficiency 
of FPGAs: cost of development and unit prices. The costs to 
develop an FPGA implementation of a given algorithm are 
much lower than for an ASIC implementation, because one is 
actually able to use the given structure of the FPGA (e.g. 
look-up table) and one can test the re-configured chip endless 
times without any further costs. This results in a shorter 
time-to-market period, which is nowadays an important cost 
factor. The unit prices are not so significant when comparing 
them with the development costs. 

 
III.  SECURITY THREATS and ATTACK OF FPGAs 
 
This section summarizes security problems produced by 

attacks against given FPGA implementations. First, we 
would like to state what the possible goals of such attacks are. 
Threats:  

The most common threat against an implementation of a 
cryptographic algorithm is to learn a confidential 
cryptographic key, that is, either a symmetric key or the 
private key of an asymmetric algorithm. Given that the 
algorithms applied are publicly known in most commercial 
applications, knowledge of the key enables the attacker to 
decrypt future and harming past communications which had 
been encrypted.  

Another threat is the one-to-one copy, or cloning, of a 
cryptographic algorithm together with its key. In some cases, 
it can be enough to run the cloned application in decryption 
mode to decipher past and future communications. In other 
cases, execution of a certain cryptographic operation with a 
presuming secret key is in most applications the sole criteria 
which authenticates a communication party. An attacker who 
can perform the same function can masquerade as the 
attacked communication party.  

Another threat is given in applications where the 
cryptographic algorithms are proprietary. Even though such 
an approach is not wide-spread, it is standard practice in 
applications such as pay TV and in government 
communications. In such scenarios, it is already interesting 
for an attacker to reverse-engineer the encryption algorithm 
itself. The associated key might later be recovered by other 
methods (e.g., bribery or classical cryptanalysis.)  
 
Black box attack : The classical method to reverse engineer a 
chip is the so called Black Box attack. The attacker inputs all 
possible combinations, while saving the corresponding 
outputs. The intruder is then able to extract the inner logic of 
the FPGA, with the help of the Karnaugh map or algorithms 
that simplify the resulting tables. This attack is only feasible 
if a small FPGA with explicit inputs and outputs is attacked 
and a lot of processor power is available. The reverse 
engineering effort grows and it will become less feasible as 
the size and complexity of the FPGA increases. The cost of 
the attack, furthermore, rises with the usage of state machines, 
LFSRs (Linear Feedback Shift Registers), integrated storage, 
and, if pins can be used, input and output. 
 
Readback attack: Readback is a feature that is provided for 
most FPGA families. This feature allows to read a 
configuration out of the FPGA for easy debugging. The idea 
of the attack is to read the configuration of the FPGA through 
the JTAG or programming interface in order to obtain secret 
information (e.g. keys, proprietary algorithm). The readback 
functionality can be prevented with a security bit. In some 
FPGA families, more than one bit is used to disable different 
features, However, an attacker can overcome these counter 
measures in FPGA with fault injection. Inserting faults, e.g., 
electro-magnetic radiation, infrared laser or even a flash light. 
It seems very likely that these attacks can be easily applied to 
FPGAs. However, Actel Corporation claims that after the 
programming phase, the cells of FPGAs cannot be read at all. 
Xilinx JBits allows a simplified and automated access to  
specific part of the bitstream, resulting in a extra advantage 
for the attacker who performs a readback attack. 
 
Cloning of SRAM FPGAs: The security implications that 
arise in a system that uses SRAM FPGAs are obvious, if the 
configuration data is stored unprotected in the system but 
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external to the FPGA. In a standard scenario, the 
configuration data is stored externally in nonvolatile memory 
(e.g., PROM) and is transmitted to the FPGA at power up in 
order to configure the FPGA. An attacker could easily 
eavesdrop on the transmission and get the configuration file. 
This attack is therefore feasible for large organizations as 
well as for those with low budgets and modest sophistication. 
 
Reverse engineering of the bitstreams: The attacks described 
so far output the bitstream of the FPGA design. In order to get 
the design of proprietary algorithms or the secret keys, one 
has to reverse-engineer the bitstream. The condition to launch 
the attack is not only that the attacker has to be in possession 
of the bitstream, but furthermore the bitstream has to be in the 
clear, meaning it is not encrypted. FPGA manufactures claim, 
that the security of the bitstream relies on the disclosure of the 
layout of the configuration data. This information will only 
be made available if a non-disclosure agreement is signed, 
which is, from a cryptographic point of view, an extremely 
insecure situation. This security by obscurity approach was 
broken at least ten years ago when the CAD software 
company NEO Cad reverse-engineered a Xilinx FPGA. NEO 
Cad was able to reconstruct the necessary information about 
look-up tables, connections, and storage elements. Hence, 
NEO Cad was able to produce design software without 
signing non-disclosure agreements with the FPGA 
manufacturer. Even though a big effort has to be made to 
reverse engineer the bitstream, for large organizations it is 
quite feasible. In terms of government organizations as 
attackers, it is also possible that they will get the information 
of the design methodology directly from the vendors or 
companies that signed NDAs. 

 
Physical attack: The aim of a physical attack is to investigate 
the chip design in order to get in-formation about proprietary 
algorithms or to determine the secret keys by probing points 
inside the chip. Hence, this attack targets parts of the FPGA, 
which are not available through the normal I/O pins. This can 
potentially be achieved through visual inspections and by 
using tools such as optical microscopes and mechanical 
probes. However, FPGAs are becoming so complex that only 
with advanced methods, such as Focused Ion Beam (FIB) 
systems, one can launch such an attack. To our knowledge, 
there are no countermeasures to protect FPGAs against this 
form of physical threat. In the following, we will try to 
analyze the effort needed to physically attack FPGAs 
manufactured with different underlying technologies. 
 
SRAM FPGAs : Due to the similarities in structure of the 
SRAM memory cell and the internal structure of the SRAM 
FPGA, it is most likely that the attacks can be employed in 
this setting. The SRAM memory cells do not entirely loose 
the contents when power is cut. The reason for these effects 
are rooted in the physical properties of semiconductors. The 
physical changes are caused mainly by three effects: 
electro-migration, hot carriers, and ionic contamination. 
Device can be altered, if 1) threshold voltage has changed by 
100mV or 2) there is a 10% change in transconductance, 
voltage or current. One could extract a DES master key from 
a module used by a bank, without any special techniques or 
equipment on power-up. The reason being that the key was 

stored in same SRAM cells over a long period of time. Hence, 
the key was "burned" into the memory cells and the key 
values were retained even after switching on the device. 
"IDDQ testing" is one of the widely used methods and it is 
based on the analysis of the current usage of the device. The 
idea is to execute a set of test vectors until a given location is 
reached, at which point the device current is measured. Hot 
carrier effects, cell charge, and transitions between different 
states can then be detected at the abnormal IDDQ 
characteristic. Access to internal portions of a device, 
possibilities are to use the scan path that the IC manufacturers 
insert for test purposes or techniques like bond pad probing. 
When it becomes necessary to use access points that are not 
provided by the manufacturer, the layers of the chip have to 
be removed. Mechanical probing with tungsten wire is the 
traditional way to discover the needed information. Focused 
Ion Beam (FIB) workstations can expose buried conductors 
and deposit new probe points. Electron-beam tester (EBT) is 
another measurement method. An EBT is a special electron 
microscope that is able to speed primary electrons up to 2.5 
kV at 5nA. EBT measures the energy and number of 
secondary electrons that are rejected. Resulting from the 
above discussion of attacks against SRAM memory cells, it 
seems likely that a physical attack against SRAM FPGAs can 
be launched successfully, assuming that the described 
techniques can be transferred. However, the physical attacks 
are quite costly and having the structure and the size of 
state-of-the-art FPGA in mind, the attack will probably only 
be possible for large organizations, for example intelligence 
services. 
 
Antifuse FPGAs. To discuss physical attacks against 
anti-fuse (AF) FPGAs, one has to first understand the 
programming process and the structure of the cells. The basic 
structure of an AF node is a thin insulating layer (smaller than 
1m2) between conductors that are programmed by applying a 
voltage. After applying the voltage, the insulator becomes a 
low-resistance conductor and there exists a connection 
(diameter about 100nm) between the conductors. The 
programming function is permanent and the low-impedance 
state will persist indefinitely. In order to be able to detect the 
existence or non-existence of the connection one has to 
remove layer after layer, or/and use cross-sectioning. 
Unfortunately, no details have been published regarding this 
type of attack. Lot of trial-and-error is necessary to find the 
configuration of one cell and that it is likely that the rest of 
the chip will be destroyed, while analyzing one cell. The 
main problem with this analysis is that the isolation layer is 
much smaller than the whole AF cell. One study estimates 
that about 800,000 chips with the same configuration are 
necessary to explore the configuration file of an Actel 
A54SX16 chip with 24,000 system gates. Another 
aggravation of the attack is that only about 2.5 % of all 
possible connections in an average design are actually used. 
A practical attack against AF FPGAs was performed and it 
was possible to alter one cell in two months at a cost of $1000. 
Based on these arguments some experts argue that physical 
attacks against AF FPGAs are harder to perform than against 
ASICs. On the other hand, we know that AF FPGAs can be 
easily attacked if not connected to a power source. Hence, it 
is easier to drill holes to disconnect two connections or to 
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repair destroyed layers. Also, depending on the source, the 
estimated cost of an attack and its complexity are lower. 
 
Flash FPGAs. The connections in flash FPGAs are realized 
through flash transistors. That means the number of electrons 
flowing through the gate changes after configuration and 
there are no optical differences as in the case of AF FPGAs. 
Thus, physical attacks performed via analysis of the FPGA 
cell material are not possible. However, flash FPGAs can be 
analyzed by placing the chip in a vacuum chamber and 
powering it up. The attacker can then use a secondary 
electron microscope to detect and display emissions. The 
attacker has to get access to the silicon die, by removing the 
packet, before he can start the attack. However, experts are 
not certain about the complexity of such an attack and there is 
some controversy regarding its practicality. Other possible 
attacks against flash FPGAs can be found in the related area 
of flash memory. The number of write/erase cycles are 
limited to 10,000 {100,000, because of the accumulation of 
electrons in the floating gate causing a gradual rise of the 
transistors threshold voltage. This fact increases the 
programming time and eventually disables the erasing of the 
cell. Furthermore, there are long term retention issues, like 
electron emission. The electrons in the floating gate migrate 
to the interface with the underlying oxide from where they 
tunnel into the substrate. This emission causes a net charge 
loss. The opposite occurs with erased cells where electrons 
are injected Ionic contamination takes place as well but the 
influence on the physical behavior is so small that it cannot be 
measured. In addition, hot carrier effects have a high 
influence, by building a tunnel between the bands. This 
causes a change in the threshold voltage of erased cells and it 
is especially significant for virgin cells [Haddad et al. 1989]. 
Another phenomenon is over-erasing, where an erase cycle is 
applied to an already-erased cell leaving the floating gate 
positively charged. Thus, turning the memory transistor into 
a depletion-mode transistor. All the described effects change 
in a more or less extensive way the cell threshold voltage, 
gate voltage, or the characteristic of the cell.  
 
Side channel attacks: Any physical implementation of a 
cryptographic system might provide a side channel that leaks 
unwanted information. Examples for side channels include in 
particular: power consumption, timing behavior, and 
electromagnet radiation. Obviously, FPGA implementations 
are also vulnerable to these attacks. Two practical attacks, 
Simple Power Analysis (SPA) and Differential Power 
Analysis (DPA) were introduced. The power consumption of 
the device while performing a cryptographic operation was 
analyzed in order to find the secret keys from a tamper 
resistant device. The main idea of DPA is to detect regions in 
the power consumption of a device which are correlated with 
the secret key. Moreover, in some cases little or no 
information about the target implementation is required. 60% 
of the power consumption in a XILINX Virtex FPGA is due 
to the interconnects and 14% and 16% is due to clocking and 
logic, respectively. These figures would seem to imply that 
and SPA type attack would be harder to implement on an 
FPGA. 

IV.  PREVENTING THE POSSIBLE ATTACKS 
 

This section shortly summarizes possible countermeasures 
that can be provided to minimize the effects of the attacks 
mentioned in the previous section. Most of them have to be 
realized by design changes through the FPGA manufacturers, 
but some could be applied during the programming phase of 
the FPGA. 
 
Preventing the black box attack : The Black Box Attack is not 
a real threat nowadays, due to the complexity of the designs 
and the size of state-of-the-art FPGAs. Furthermore, the 
nature of cryptographic algorithms prevents the attack as well. 
Cryptographic algorithms can be segmented in two groups: 
symmetric-key and public-key algorithms. Symmetric-key 
algorithms can be further divided into stream and block 
ciphers. Today's stream ciphers output a bit stream, with a 
period length of 128 bits [Thomas et al. 2003]. Block ciphers, 
like AES, are designed with a block length of 128 bits and a 
minimum key length of 128 bits. Minimum length in the case 
of public-key algorithms is 160 bits for ECC and 1024 bits 
for discrete logarithm and RSA-based systems. It is widely 
believed, that it is infeasible to perform a brute force attack 
and search a space with 280 possibilities. Hence, 
implementations of this algorithms cannot be attacked with 
the black box approach. 
 
Preventing the cloning of SRAM FPGAs : There are many 
suggestions to prevent the cloning of SRAM FPGAs, mainly 
motivated by the desire to prevent reverse engineering of 
general, i.e., non-cryptographic, FPGA designs. One solution 
would be to check the serial number before executing the 
design and delete the circuit if it is not correct. This will 
increase complexity as the whole chip, including the serial 
number can be easily copied and every board would need a 
different configuration. Another solution would be to use 
dongles to protect the design. Dongles do not provide solid 
security, as it can be seen from the software industry's 
experience using dongles for their tools. A more realistic 
solution would be to have the nonvolatile memory and the 
FPGA in one chip or to combine both parts by covering them 
with epoxy. This reflects also the trend in chip manufacturing 
to have different components combined, e.g., the FPSLIC 
from Atmel. However, it has to be guaranteed that an attacker 
is not able to separate the parts. Encryption of the 
configuration file is the most effective and practical 
counter-measure against the cloning of SRAM FPGAs. There 
are several patents that propose different scenarios related to 
the encryption of the configuration file: how to encrypt, how 
to load the file into the FPGA, how to provide key 
management, how to configure the encryption algorithms, 
and how to store the secret data.If an attacker copies the 
partly decrypted file, the non-decrypted functionality is 
avail-able, whereas the one decrypted is not. Thus, the 
attacker tries to find the errors in the design not aware of the 
fact, that they are caused through the encrypted part of the 
configuration. Most likely an attacker with little resources, 
would have dropped the reverse engineering effort, when 
realizing that parts are decrypted. However, this approach 
adds hardly any extra complexity to an attack if we assume 
that an attacker has a lot of resources. One method is different 
parts of the configuration file are encrypted with different 
keys. The 60RS family from Actel was the first attempt to 
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have a key stored in the FPGA in order to be able to encrypt 
the configuration file before transmitting it to the chip. The 
problem was that every FPGA had the same key on board. 
This implies that if an attacker has one key he can get the 
secret information from all FPGAs. To overcome this more 
than one key is stored in the FPGA.An approach in a 
completely different direction would be to power the whole 
SRAM FPGA with a battery, which would make 
transmission of the configuration file after a power loss 
unnecessary. This solution does not appear practical, 
however, because of the power consumption of FPGAs. 
Hence, a combination of encryption and battery power 
provides a possible solution. Xilinx addresses this with an 
on-chip 3DES decryption engine in its Virtex where only the 
two keys are stored in the battery powered memory. Due to 
the fact that the battery powers only a very small memory 
cells, the battery is limited only by its own life span. 
 
Preventing the Physical Attack :To prevent physical attacks, 
one has to make sure that the retention effects of the cells are 
as small as possible, so that an attacker cannot detect the 
status of the cells. Already after storing a value in a SRAM 
memory cell for 100-500 seconds, the access time and 
operation voltage will change. Furthermore, the recovery 
process is heavily dependent on the temperature. The solution 
would be to invert the data stored periodically or to move the 
data around in memory. Cryptographic applications cause 
also long-term retention effects in SRAM memory cells by 
repeatedly feeding data through the same circuit. One 
example is specialized hardware that uses always the same 
circuits to feed the secret key to the arithmetic unit. 
Neutralization of this effect can be achieved by applying an 
opposite current or by inserting dummy cycles into the 
circuit .In terms of FPGA application, it is very costly or even 
impractical to provide solutions like inverting the bits or 
changing the location for the whole configuration file. A 
possibility could be that this is done only for the crucial part 
of the design, like the secret keys. Counter techniques such as 
dummy cycles and opposite current approach can be carried 
forward to FPGA applications. In terms of flash/EEPROM 
memory cell, one has to consider that the first write/erase 
cycles cause a larger shift in the cell threshold and that this 
effect will become less noticeably after ten write/erase cycles. 
Thus, one should program the FPGA about 100 times with 
random data, to avoid these effects. The phenomenon of over 
erasing flash/EEPROM cells can be minimized by first 
programming all cells before deleting them. 
 
Preventing the ReadbackAttack :The readback attack can be 
prevented with the security bits set, as provided by the 
manufactures. If one wants to make sure that an attacker is 
not able to apply fault injection, the FPGA has to be 
embedded into a secure environment, where after detection of 
an interference the whole configuration is deleted or the 
FPGA is destroyed. 
 
Preventing the side channel attack :The methods can 
generally be divide into software and hardware 
countermeasures, with the majority of proposals dealing with 
software countermeasures. Software countermeasures refer 
primarily to algorithmic changes, such as masking of secret 

keys with random values, which are also applicable to 
implementations in custom hardware or FPGA. Hardware 
countermeasures often deal either with some form of power 
trace smoothing or with transistor-level changes of the logic. 
Neither seem to be easily applicable to FPGAs without 
support from the manufacturers. However, some proposals 
such as duplicated architectures might work on today’s 
FPGAs. 

 
V. AES ON FPGA 

 
Multiple FPGA implementation studies have been 

presented for the AES candidate algorithm finalists the 
results of which are discussed below for feedback modes of 
operation. A similar exercise can beperformed for 
non-feedback modes. The studies performed byElbirt et al.  
used a Xilinx Virtex XCV1000-4 as the target FPGA. The 
studyperformed by Dandalis et al.  used the Xilinx Virtex 
Family but did notspecify which FPGA was used as the target 
device, this makes comparison withother implementations 
very hard.PP-2, LU-1, and LU-8, correspond to partial 
pipelining with twostages, one round loop unrolling, and 
eight rounds loop unrolling architectures,respectively. In 
addition, notice that the implementation of a one stage 
partialpipeline, an iterative looping architecture, a one round 
loop unrolled architectureimplementations which used the 
Xilinx Virtex XCV1000 as their hardware platformbecause it 
is the most common platform among published works, thus 
making acomparison somewhat reasonable. One can see that 
most implementations achievesimilar throughputs for the 
same algorithms. In addition, if one were to 
choosealgorithms based on their throughput all authors 
would agree that Serpent wouldwin followed closely by 
Rijndael, Twofish and RC6, and MARS at the end4. Themost 
interesting effect is that Gaj and Chodowiec  achieved similar 
performanceas other implementations at the cost of half the 
area, which is due, according to theauthors, to resource 
sharing. If we were to perform a similar exercise in terms of 
theTPS ratio, then Rijndael would win followed by Serpent 
and Twofish, and finally,RC6 and MARS. One reason for 
RC6 and MARS to have the poorest performancewhen 
implemented on FPGAs is their use of a multiplier in their 
round function.We refer to Gaj and Chodowiec ,Elbirt et 
al. ,Nechvatal et al formore in depth architecture and 
performance comparisons of the AES candidates.FPGA 
implementations of individual candidate algorithms (both 
finalists andnon-finalists) have also been performed. 
Implementations of CAST-256 achievedthroughputs of 11.03 
Mbits/sec using a Xilinx Virtex XCV1000-4and13 Mbits/sec 
using a Xilinx XC4020XV-9. An RC6 implementation 
achieved a throughput of 37 Mbits/sec using a Xilinx 
XC402OXV-9. A Serpent implementation using a Xilinx 
Virtex XCV1000-4achieved a throughput of 4.86 
Gbits/sec .When targeted toa Xilinx Virtex-E XCV400E-8, a 
Serpent implementation achieved a throughputof 17.55 
Gbits/sec through the use of the Xilinx run-time 
reconfiguration softwareapplication JBitsTM which allowed 
for real time key-specific compilation of thebit-stream used 
to program the FPGA [Patterson 2000a]. This run-time 
reconfiguration resulted in a smaller and faster design (which 
operated at 137.15 MHz)as compared to the design in of 



 

International Journal of Optimal Research in Science and Technology (IJORST) 

Volume 2, Issue 1, June 2017 

 

www.ijorst.com Page 109 
 

 

Elbirt and Paar(which operated at 37.97MHz). When 
implemented using an FPGA from the Altera Flex 10KA 
Family, theSerpent algorithm achieved a maximum 
throughput of 301 Mbits/sec  however, it is important to note 
that this implementation  implements 8 of the Serpent's 
algorithm thirty two rounds whilethe implementations by 
Elbirt and PaarandPatterson  implement allthe rounds of the 
Serpent algorithm. Note that all of the presented 
throughputvalues are for non-feedback modes of 
operation.Multiple implementations of Rijndael, the AES, 
have been presented using bothXilinx and Altera FPGAs.The 
implementation in by McLoone and McCannyachieves a 
throughputof 6.956 Gbits/sec using a Xilinx Virtex-E 
XCV3200E-8. Utilizing ROM to implement the Rijndael 
Byte-Sub operation resulted in a significant increase in 
through-put and decrease in area as compared to 
implementations in Dandalisat theexpense of BRAM Blocks 
which the previous implementations did not use. 
Whentargeting the more advanced Altera APEX20KE200-1, 
Rijndael implementationsachieved throughputs ranging from 
570 Mbits/sec to 964 Mbits/sec. depending on the 
implementation methodology. Four recent implementations 
are also worth mentioning. The implementations achieve 
throughput rates of11.8 and 17.8 Gbits/s, respectively. These 
throughputs are only achieved throughpipelining and thus are 
not suitable for feedback modes of operation. Notice that 
JÄarvinen achieve such high throughputs for a 128-bit key 
Rijndael implementation. The work presented in Standaert et 
al. is also interesting because it compares different 
implementation options (Look-up table 
basedimplementations, RAM-based implementations, and 
composite field implementations) and proposed some 
heuristics to evaluate the hardware efficiency at 
differentsteps of the design process which result on 
particularly efficient implementations.Finally, we include the 
work presented in Chodowiec and Gaj as its targetis the 
implementation of a resource efficient AES core on FPGAs. 
Such work hasnot been considered extensively in the 
literature (usually designs are optimized forspeed rather than 
area when targeting FPGAs). In addition, they proposed a 
newway of implementing the MixColumns and 
InvMixColumns transformations whichreduces area and 
might be interesting in its own right. This work achieves data 
streams of 150 Mbits/sec for encryption and decryption ona 
low-cost Xilinx Spartan II FPGA using 222 slices and 3 
BRAMs. 

 
V       CONCLUSION 

 
We analyzed possible attacks against the use of FPGA in 

security applications. Black box attacks do not seem to be 
feasible for state-of-the-art FPGAs. However, it seems very 
likely for an attacker to get the secret information stored in a 
FPGA, when combining readback and fault injection attacks. 
Cloning of SRAM FPGA and reverse engineering depend on 
the specifics of the system under attack, and they will 
probably involve a lot of effort, but this does not seem 
entirely impossible. Physical attacks against FPGAs are very 
complex due to the physical properties of the semiconductors 
in the case of flash/SRAM/EEPROM FPGAs and the small 
size of AF cells. It appears that such attacks are even harder 

than analogous attacks against ASICs. Even though FPGA 
have different internal structures than ASICs with the same 
functionality, we believe that side-channel attacks against 
FPGAs, in particular power-analysis attacks, will be feasible 
too.AES have been thoroughly investigated and different 
approaches to implementations exposed in the context of 
embedded systems. 

While, the art of cryptographic algorithm implementation 
is reaching maturity, FPGAs as a security platform are hot 
topic for security applications. FPGA in a secure 
environment, for instance, be a box with tamper sensors 
which triggers what is called ‘zeroization’ of cryptographic 
keys, when an attack is being detected.  
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