
International Journal of Optimal Research in Science and Technology (IJORST)

Volume 2, Issue 1, June 2017

www.ijorst.com


Abstract—These FPGAs have become dominant part of

embedded systems, it is imperative to consider their security as

a whole. It provides a state-of-the-art description of security

issues on FPGAs, both from the system and implementation

perspectives. We discuss the advantages of reconfigurable

hardware for cryptographic applications, show potential

security problems of FPGAs, and provide a list of open research

problems. Moreover, we summarize both public and

symmetric-key algorithm implementations on FPGAs.

IndexTerms— Security, cryptography, reconfigurable

hardware, AES, FPGA.

I. INTRODUCTION

FPGAs are becoming integral parts of embedded systems
and many embedded applications require security
mechanisms because of their very nature, it is imperative to
consider security on FPGAs as a whole. Applications will be
wireless making the need for security and privacy preserving
mechanisms genuine. The configurability of FPGAs offers
major advantages when using them for cryptographic
applications. We need to know the suitability of FPGAs for
security applications from a systems point of view and test
the resistance of FPGAs to physical or system attacks, which,
in practice, pose for a greater danger than algorithmic attacks.
The first part of this paper is devoted to studying FPGAs
from a systems security perspective. We do this by looking at
attacks documented in the literature against FPGAs as well as
attacks that have been performed against other hardware
platforms and by adapting them and their solutions to FPGAs.
We provide a list of open problems regarding system security
of FPGAs. The second part of this work makes an attempt to
organize the vast literature on FPGA cryptographic algorithm
implementation according to the different hard mathematical
problems on which the cryptographic primitives are based. In
addition, taking performance (both area and throughput) as a
measure of different implementations reported in the
literature, we make recommendations as to which methods
are best suited to implement cryptographic algorithms on
FPGAs. The rapid progress in speed and integration density
of commercial FPGAs increase advantages of FPGAs for
cryptographic applications. Possible attacks are presented
with possible counter measures against the attacks. We
discuss possible metrics to be used to compare the FPGA

Manuscript received June, 2017.

AmitKumar,P.G. Student, Pune University, SVCET College, (e-mail:

amitkumar_123@rediffmail.com).Rajuri, Pune, India,

Manoj Kumar, E&TC Dept., Pune University, SVCET College,(e-mail:

manoj1985.111@rediffmail.com), Rajuri, Pune

P. Balaramudu,Pune University, SVCET College, Rajuri, Pune, (e-mail:

balram9hossanna@hotmail.com).

algorithm implementations. We also attempt to list open
problems regarding security applications in which FPGAs are
used.

II SYSTEM ADVANTAGES OF FPGAS FOR
CRYPTOGRAPHIC APPLICATIONS

In this section, we list potential advantages of

reconfigurable hardware (RCHW) in cryptographic
applications.

Algorithm Agility: This term refers to the switching of
cryptographic algorithms during operation of the targeted
application. Widely held of modern security protocols, such
as SSL or IPsec, is algorithm independent and allow for
multiple encryption algorithms. The encryption algorithm is
negotiated on a per-session basis and a wide variety may be
required. Eg. IPsec allows among others DES, 3DES,
Blowfish, CAST, IDEA, RC4 and RC6 as algorithms, and
future extensions are possible. Advantages of algorithm
independent protocols are:

a) Ability to delete broken algorithms
b) Choose algorithms according to certain (e.g. personal)

preferences
c) Ability to add new algorithms. Algorithm agility is

expensive with old-style hardware. FPGAs canbe
reprogrammed in real time.

Algorithm Upload: It is perceivable that fielded devices
are upgraded with a new encryption algorithm. A reason for
this could be that the product has to be compatible to new
applications. From a cryptographically point of view,
algorithm upload can be necessary because a current
algorithm was broken. E.g., Data Encryption Standard (DES)
made by Federal Information Processing Standards, a
standard expired. A new standard was created Advanced
Encryption Standard - AES by U.S. Department of
Commerce/National Institute of Standard and Technology
and/or that the list of ciphers in an algorithm independent
protocol was extended. Assuming there is some kind of
(temporary) connection to a net-work such as the Internet,
FPGA-equipped encryption devices can upload the new
configuration code.

Architecture Efficiency: In certain cases, hardware
architecture can be much more efficient if it is designed for a
specific set of parameters. Parameters for cryptographic
algorithms can be for example the key, the underlying finite
field, the coefficient used (e.g., the specific curve of an ECC
system), and so on. Generally speaking, the more specific an
algorithm is implemented the more efficient it can become.
An efficient parameter-specific implementation of the
symmetric cipher IDEA is with fixed keys and operation of
constant multiplication which is far more efficient than a

Implementation Efficiency of Cryptography and
AES on FPGAs

Amit Kumar, Manoj Kumar, P. Balaramudu

International Journal of Optimal Research in Science and Technology (IJORST)

Volume 2, Issue 1, June 2017

www.ijorst.com Page 105

general modular multiplication. Another example taken from
asymmetric cryptography is the arithmetic architectures for
Galois fields. These architectures tend to be more efficient if
the field order and irreducible polynomial are fixed. Squaring
in GF (2m) takes m=2 cycles with a general architecture, but
only one cycle if the architecture is compiled for a fixed field.
Notice that squaring in GFis one of the most common
operations when implementing elliptic curve cryptosystems
defined over fields of characteristic two. FPGAs allow this
type of design and optimization with specific parameter set.
Due to the nature of FPGAs, the application can be changed
totally or partially.

Resource Efficiency: The majority of security protocols
are hybrid protocols, e.g. IPSec, SSL and TLS. This implies
that a public-key algorithm is used to transmit the session key.
After the key was established a private-key algorithm is
needed for data encryption. Since the algorithms are not used
simultaneously, the same FPGA device can be used for both
through run-time reconfiguration.

Algorithm Modification: There are applications which
require modification of standardized cryptographic
algorithms by using proprietary S-boxes or permutations.
Such modifications are easily made with RCHW. One
example, where a standardized algorithm was slightly
changed, is the UNIX password encryption where DES is
used 25 times in a row and a 12-bit salt modifies the
expansion mapping. It is also attractive to customize block
cipher such as DES or AES with proprietary S-boxes for
certain applications.

Throughput: General-purpose CPUs are not optimized for
fast execution especially in the case of public-key algorithms.
Mainly because they lack instructions for modular arithmetic
operations on long operands. Modular arithmetic operations
include for example exponentiation for RSA and
multiplication, squaring, inversion, and addition for elliptic
curve cryptosystems (ECC). FPGA implementations have the
potential of running substantially faster than software
implementations. The block cipher AES, exemplarily,
reaches a data rate of 112.3 Mbit/s and 718.4 Mbit/s on a DSP
TI TMS320C6201 and Pentium III respectively. In
comparison, the FPGA implementation of the same
algorithm on a Virtex XCV-1000BG560-6 achieved 12
GBit/s using 12,600 slices and 80 RAMs.

Cost Efficiency: There are two cost factors, that have to be
taken into consideration, when analyzing the cost efficiency
of FPGAs: cost of development and unit prices. The costs to
develop an FPGA implementation of a given algorithm are
much lower than for an ASIC implementation, because one is
actually able to use the given structure of the FPGA (e.g.
look-up table) and one can test the re-configured chip endless
times without any further costs. This results in a shorter
time-to-market period, which is nowadays an important cost
factor. The unit prices are not so significant when comparing
them with the development costs.

III. SECURITY THREATS and ATTACK OF FPGAs

This section summarizes security problems produced by

attacks against given FPGA implementations. First, we
would like to state what the possible goals of such attacks are.
Threats:

The most common threat against an implementation of a
cryptographic algorithm is to learn a confidential
cryptographic key, that is, either a symmetric key or the
private key of an asymmetric algorithm. Given that the
algorithms applied are publicly known in most commercial
applications, knowledge of the key enables the attacker to
decrypt future and harming past communications which had
been encrypted.

Another threat is the one-to-one copy, or cloning, of a
cryptographic algorithm together with its key. In some cases,
it can be enough to run the cloned application in decryption
mode to decipher past and future communications. In other
cases, execution of a certain cryptographic operation with a
presuming secret key is in most applications the sole criteria
which authenticates a communication party. An attacker who
can perform the same function can masquerade as the
attacked communication party.

Another threat is given in applications where the
cryptographic algorithms are proprietary. Even though such
an approach is not wide-spread, it is standard practice in
applications such as pay TV and in government
communications. In such scenarios, it is already interesting
for an attacker to reverse-engineer the encryption algorithm
itself. The associated key might later be recovered by other
methods (e.g., bribery or classical cryptanalysis.)

Black box attack : The classical method to reverse engineer a
chip is the so called Black Box attack. The attacker inputs all
possible combinations, while saving the corresponding
outputs. The intruder is then able to extract the inner logic of
the FPGA, with the help of the Karnaugh map or algorithms
that simplify the resulting tables. This attack is only feasible
if a small FPGA with explicit inputs and outputs is attacked
and a lot of processor power is available. The reverse
engineering effort grows and it will become less feasible as
the size and complexity of the FPGA increases. The cost of
the attack, furthermore, rises with the usage of state machines,
LFSRs (Linear Feedback Shift Registers), integrated storage,
and, if pins can be used, input and output.

Readback attack: Readback is a feature that is provided for
most FPGA families. This feature allows to read a
configuration out of the FPGA for easy debugging. The idea
of the attack is to read the configuration of the FPGA through
the JTAG or programming interface in order to obtain secret
information (e.g. keys, proprietary algorithm). The readback
functionality can be prevented with a security bit. In some
FPGA families, more than one bit is used to disable different
features, However, an attacker can overcome these counter
measures in FPGA with fault injection. Inserting faults, e.g.,
electro-magnetic radiation, infrared laser or even a flash light.
It seems very likely that these attacks can be easily applied to
FPGAs. However, Actel Corporation claims that after the
programming phase, the cells of FPGAs cannot be read at all.
Xilinx JBits allows a simplified and automated access to
specific part of the bitstream, resulting in a extra advantage
for the attacker who performs a readback attack.

Cloning of SRAM FPGAs: The security implications that
arise in a system that uses SRAM FPGAs are obvious, if the
configuration data is stored unprotected in the system but

International Journal of Optimal Research in Science and Technology (IJORST)

Volume 2, Issue 1, June 2017

www.ijorst.com

external to the FPGA. In a standard scenario, the
configuration data is stored externally in nonvolatile memory
(e.g., PROM) and is transmitted to the FPGA at power up in
order to configure the FPGA. An attacker could easily
eavesdrop on the transmission and get the configuration file.
This attack is therefore feasible for large organizations as
well as for those with low budgets and modest sophistication.

Reverse engineering of the bitstreams: The attacks described
so far output the bitstream of the FPGA design. In order to get
the design of proprietary algorithms or the secret keys, one
has to reverse-engineer the bitstream. The condition to launch
the attack is not only that the attacker has to be in possession
of the bitstream, but furthermore the bitstream has to be in the
clear, meaning it is not encrypted. FPGA manufactures claim,
that the security of the bitstream relies on the disclosure of the
layout of the configuration data. This information will only
be made available if a non-disclosure agreement is signed,
which is, from a cryptographic point of view, an extremely
insecure situation. This security by obscurity approach was
broken at least ten years ago when the CAD software
company NEO Cad reverse-engineered a Xilinx FPGA. NEO
Cad was able to reconstruct the necessary information about
look-up tables, connections, and storage elements. Hence,
NEO Cad was able to produce design software without
signing non-disclosure agreements with the FPGA
manufacturer. Even though a big effort has to be made to
reverse engineer the bitstream, for large organizations it is
quite feasible. In terms of government organizations as
attackers, it is also possible that they will get the information
of the design methodology directly from the vendors or
companies that signed NDAs.

Physical attack: The aim of a physical attack is to investigate
the chip design in order to get in-formation about proprietary
algorithms or to determine the secret keys by probing points
inside the chip. Hence, this attack targets parts of the FPGA,
which are not available through the normal I/O pins. This can
potentially be achieved through visual inspections and by
using tools such as optical microscopes and mechanical
probes. However, FPGAs are becoming so complex that only
with advanced methods, such as Focused Ion Beam (FIB)
systems, one can launch such an attack. To our knowledge,
there are no countermeasures to protect FPGAs against this
form of physical threat. In the following, we will try to
analyze the effort needed to physically attack FPGAs
manufactured with different underlying technologies.

SRAM FPGAs : Due to the similarities in structure of the
SRAM memory cell and the internal structure of the SRAM
FPGA, it is most likely that the attacks can be employed in
this setting. The SRAM memory cells do not entirely loose
the contents when power is cut. The reason for these effects
are rooted in the physical properties of semiconductors. The
physical changes are caused mainly by three effects:
electro-migration, hot carriers, and ionic contamination.
Device can be altered, if 1) threshold voltage has changed by
100mV or 2) there is a 10% change in transconductance,
voltage or current. One could extract a DES master key from
a module used by a bank, without any special techniques or
equipment on power-up. The reason being that the key was

stored in same SRAM cells over a long period of time. Hence,
the key was "burned" into the memory cells and the key
values were retained even after switching on the device.
"IDDQ testing" is one of the widely used methods and it is
based on the analysis of the current usage of the device. The
idea is to execute a set of test vectors until a given location is
reached, at which point the device current is measured. Hot
carrier effects, cell charge, and transitions between different
states can then be detected at the abnormal IDDQ
characteristic. Access to internal portions of a device,
possibilities are to use the scan path that the IC manufacturers
insert for test purposes or techniques like bond pad probing.
When it becomes necessary to use access points that are not
provided by the manufacturer, the layers of the chip have to
be removed. Mechanical probing with tungsten wire is the
traditional way to discover the needed information. Focused
Ion Beam (FIB) workstations can expose buried conductors
and deposit new probe points. Electron-beam tester (EBT) is
another measurement method. An EBT is a special electron
microscope that is able to speed primary electrons up to 2.5
kV at 5nA. EBT measures the energy and number of
secondary electrons that are rejected. Resulting from the
above discussion of attacks against SRAM memory cells, it
seems likely that a physical attack against SRAM FPGAs can
be launched successfully, assuming that the described
techniques can be transferred. However, the physical attacks
are quite costly and having the structure and the size of
state-of-the-art FPGA in mind, the attack will probably only
be possible for large organizations, for example intelligence
services.

Antifuse FPGAs. To discuss physical attacks against
anti-fuse (AF) FPGAs, one has to first understand the
programming process and the structure of the cells. The basic
structure of an AF node is a thin insulating layer (smaller than
1m2) between conductors that are programmed by applying a
voltage. After applying the voltage, the insulator becomes a
low-resistance conductor and there exists a connection
(diameter about 100nm) between the conductors. The
programming function is permanent and the low-impedance
state will persist indefinitely. In order to be able to detect the
existence or non-existence of the connection one has to
remove layer after layer, or/and use cross-sectioning.
Unfortunately, no details have been published regarding this
type of attack. Lot of trial-and-error is necessary to find the
configuration of one cell and that it is likely that the rest of
the chip will be destroyed, while analyzing one cell. The
main problem with this analysis is that the isolation layer is
much smaller than the whole AF cell. One study estimates
that about 800,000 chips with the same configuration are
necessary to explore the configuration file of an Actel
A54SX16 chip with 24,000 system gates. Another
aggravation of the attack is that only about 2.5 % of all
possible connections in an average design are actually used.
A practical attack against AF FPGAs was performed and it
was possible to alter one cell in two months at a cost of $1000.
Based on these arguments some experts argue that physical
attacks against AF FPGAs are harder to perform than against
ASICs. On the other hand, we know that AF FPGAs can be
easily attacked if not connected to a power source. Hence, it
is easier to drill holes to disconnect two connections or to

International Journal of Optimal Research in Science and Technology (IJORST)

Volume 2, Issue 1, June 2017

www.ijorst.com Page 107

repair destroyed layers. Also, depending on the source, the
estimated cost of an attack and its complexity are lower.

Flash FPGAs. The connections in flash FPGAs are realized
through flash transistors. That means the number of electrons
flowing through the gate changes after configuration and
there are no optical differences as in the case of AF FPGAs.
Thus, physical attacks performed via analysis of the FPGA
cell material are not possible. However, flash FPGAs can be
analyzed by placing the chip in a vacuum chamber and
powering it up. The attacker can then use a secondary
electron microscope to detect and display emissions. The
attacker has to get access to the silicon die, by removing the
packet, before he can start the attack. However, experts are
not certain about the complexity of such an attack and there is
some controversy regarding its practicality. Other possible
attacks against flash FPGAs can be found in the related area
of flash memory. The number of write/erase cycles are
limited to 10,000 {100,000, because of the accumulation of
electrons in the floating gate causing a gradual rise of the
transistors threshold voltage. This fact increases the
programming time and eventually disables the erasing of the
cell. Furthermore, there are long term retention issues, like
electron emission. The electrons in the floating gate migrate
to the interface with the underlying oxide from where they
tunnel into the substrate. This emission causes a net charge
loss. The opposite occurs with erased cells where electrons
are injected Ionic contamination takes place as well but the
influence on the physical behavior is so small that it cannot be
measured. In addition, hot carrier effects have a high
influence, by building a tunnel between the bands. This
causes a change in the threshold voltage of erased cells and it
is especially significant for virgin cells [Haddad et al. 1989].
Another phenomenon is over-erasing, where an erase cycle is
applied to an already-erased cell leaving the floating gate
positively charged. Thus, turning the memory transistor into
a depletion-mode transistor. All the described effects change
in a more or less extensive way the cell threshold voltage,
gate voltage, or the characteristic of the cell.

Side channel attacks: Any physical implementation of a
cryptographic system might provide a side channel that leaks
unwanted information. Examples for side channels include in
particular: power consumption, timing behavior, and
electromagnet radiation. Obviously, FPGA implementations
are also vulnerable to these attacks. Two practical attacks,
Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) were introduced. The power consumption of
the device while performing a cryptographic operation was
analyzed in order to find the secret keys from a tamper
resistant device. The main idea of DPA is to detect regions in
the power consumption of a device which are correlated with
the secret key. Moreover, in some cases little or no
information about the target implementation is required. 60%
of the power consumption in a XILINX Virtex FPGA is due
to the interconnects and 14% and 16% is due to clocking and
logic, respectively. These figures would seem to imply that
and SPA type attack would be harder to implement on an
FPGA.

IV. PREVENTING THE POSSIBLE ATTACKS

This section shortly summarizes possible countermeasures
that can be provided to minimize the effects of the attacks
mentioned in the previous section. Most of them have to be
realized by design changes through the FPGA manufacturers,
but some could be applied during the programming phase of
the FPGA.

Preventing the black box attack : The Black Box Attack is not
a real threat nowadays, due to the complexity of the designs
and the size of state-of-the-art FPGAs. Furthermore, the
nature of cryptographic algorithms prevents the attack as well.
Cryptographic algorithms can be segmented in two groups:
symmetric-key and public-key algorithms. Symmetric-key
algorithms can be further divided into stream and block
ciphers. Today's stream ciphers output a bit stream, with a
period length of 128 bits [Thomas et al. 2003]. Block ciphers,
like AES, are designed with a block length of 128 bits and a
minimum key length of 128 bits. Minimum length in the case
of public-key algorithms is 160 bits for ECC and 1024 bits
for discrete logarithm and RSA-based systems. It is widely
believed, that it is infeasible to perform a brute force attack
and search a space with 280 possibilities. Hence,
implementations of this algorithms cannot be attacked with
the black box approach.

Preventing the cloning of SRAM FPGAs : There are many
suggestions to prevent the cloning of SRAM FPGAs, mainly
motivated by the desire to prevent reverse engineering of
general, i.e., non-cryptographic, FPGA designs. One solution
would be to check the serial number before executing the
design and delete the circuit if it is not correct. This will
increase complexity as the whole chip, including the serial
number can be easily copied and every board would need a
different configuration. Another solution would be to use
dongles to protect the design. Dongles do not provide solid
security, as it can be seen from the software industry's
experience using dongles for their tools. A more realistic
solution would be to have the nonvolatile memory and the
FPGA in one chip or to combine both parts by covering them
with epoxy. This reflects also the trend in chip manufacturing
to have different components combined, e.g., the FPSLIC
from Atmel. However, it has to be guaranteed that an attacker
is not able to separate the parts. Encryption of the
configuration file is the most effective and practical
counter-measure against the cloning of SRAM FPGAs. There
are several patents that propose different scenarios related to
the encryption of the configuration file: how to encrypt, how
to load the file into the FPGA, how to provide key
management, how to configure the encryption algorithms,
and how to store the secret data.If an attacker copies the
partly decrypted file, the non-decrypted functionality is
avail-able, whereas the one decrypted is not. Thus, the
attacker tries to find the errors in the design not aware of the
fact, that they are caused through the encrypted part of the
configuration. Most likely an attacker with little resources,
would have dropped the reverse engineering effort, when
realizing that parts are decrypted. However, this approach
adds hardly any extra complexity to an attack if we assume
that an attacker has a lot of resources. One method is different
parts of the configuration file are encrypted with different
keys. The 60RS family from Actel was the first attempt to

International Journal of Optimal Research in Science and Technology (IJORST)

Volume 2, Issue 1, June 2017

www.ijorst.com

have a key stored in the FPGA in order to be able to encrypt
the configuration file before transmitting it to the chip. The
problem was that every FPGA had the same key on board.
This implies that if an attacker has one key he can get the
secret information from all FPGAs. To overcome this more
than one key is stored in the FPGA.An approach in a
completely different direction would be to power the whole
SRAM FPGA with a battery, which would make
transmission of the configuration file after a power loss
unnecessary. This solution does not appear practical,
however, because of the power consumption of FPGAs.
Hence, a combination of encryption and battery power
provides a possible solution. Xilinx addresses this with an
on-chip 3DES decryption engine in its Virtex where only the
two keys are stored in the battery powered memory. Due to
the fact that the battery powers only a very small memory
cells, the battery is limited only by its own life span.

Preventing the Physical Attack :To prevent physical attacks,
one has to make sure that the retention effects of the cells are
as small as possible, so that an attacker cannot detect the
status of the cells. Already after storing a value in a SRAM
memory cell for 100-500 seconds, the access time and
operation voltage will change. Furthermore, the recovery
process is heavily dependent on the temperature. The solution
would be to invert the data stored periodically or to move the
data around in memory. Cryptographic applications cause
also long-term retention effects in SRAM memory cells by
repeatedly feeding data through the same circuit. One
example is specialized hardware that uses always the same
circuits to feed the secret key to the arithmetic unit.
Neutralization of this effect can be achieved by applying an
opposite current or by inserting dummy cycles into the
circuit .In terms of FPGA application, it is very costly or even
impractical to provide solutions like inverting the bits or
changing the location for the whole configuration file. A
possibility could be that this is done only for the crucial part
of the design, like the secret keys. Counter techniques such as
dummy cycles and opposite current approach can be carried
forward to FPGA applications. In terms of flash/EEPROM
memory cell, one has to consider that the first write/erase
cycles cause a larger shift in the cell threshold and that this
effect will become less noticeably after ten write/erase cycles.
Thus, one should program the FPGA about 100 times with
random data, to avoid these effects. The phenomenon of over
erasing flash/EEPROM cells can be minimized by first
programming all cells before deleting them.

Preventing the ReadbackAttack :The readback attack can be
prevented with the security bits set, as provided by the
manufactures. If one wants to make sure that an attacker is
not able to apply fault injection, the FPGA has to be
embedded into a secure environment, where after detection of
an interference the whole configuration is deleted or the
FPGA is destroyed.

Preventing the side channel attack :The methods can
generally be divide into software and hardware
countermeasures, with the majority of proposals dealing with
software countermeasures. Software countermeasures refer
primarily to algorithmic changes, such as masking of secret

keys with random values, which are also applicable to
implementations in custom hardware or FPGA. Hardware
countermeasures often deal either with some form of power
trace smoothing or with transistor-level changes of the logic.
Neither seem to be easily applicable to FPGAs without
support from the manufacturers. However, some proposals
such as duplicated architectures might work on today’s
FPGAs.

V. AES ON FPGA

Multiple FPGA implementation studies have been

presented for the AES candidate algorithm finalists the
results of which are discussed below for feedback modes of
operation. A similar exercise can beperformed for
non-feedback modes. The studies performed byElbirt et al.
used a Xilinx Virtex XCV1000-4 as the target FPGA. The
studyperformed by Dandalis et al. used the Xilinx Virtex
Family but did notspecify which FPGA was used as the target
device, this makes comparison withother implementations
very hard.PP-2, LU-1, and LU-8, correspond to partial
pipelining with twostages, one round loop unrolling, and
eight rounds loop unrolling architectures,respectively. In
addition, notice that the implementation of a one stage
partialpipeline, an iterative looping architecture, a one round
loop unrolled architectureimplementations which used the
Xilinx Virtex XCV1000 as their hardware platformbecause it
is the most common platform among published works, thus
making acomparison somewhat reasonable. One can see that
most implementations achievesimilar throughputs for the
same algorithms. In addition, if one were to
choosealgorithms based on their throughput all authors
would agree that Serpent wouldwin followed closely by
Rijndael, Twofish and RC6, and MARS at the end4. Themost
interesting effect is that Gaj and Chodowiec achieved similar
performanceas other implementations at the cost of half the
area, which is due, according to theauthors, to resource
sharing. If we were to perform a similar exercise in terms of
theTPS ratio, then Rijndael would win followed by Serpent
and Twofish, and finally,RC6 and MARS. One reason for
RC6 and MARS to have the poorest performancewhen
implemented on FPGAs is their use of a multiplier in their
round function.We refer to Gaj and Chodowiec ,Elbirt et
al. ,Nechvatal et al formore in depth architecture and
performance comparisons of the AES candidates.FPGA
implementations of individual candidate algorithms (both
finalists andnon-finalists) have also been performed.
Implementations of CAST-256 achievedthroughputs of 11.03
Mbits/sec using a Xilinx Virtex XCV1000-4and13 Mbits/sec
using a Xilinx XC4020XV-9. An RC6 implementation
achieved a throughput of 37 Mbits/sec using a Xilinx
XC402OXV-9. A Serpent implementation using a Xilinx
Virtex XCV1000-4achieved a throughput of 4.86
Gbits/sec .When targeted toa Xilinx Virtex-E XCV400E-8, a
Serpent implementation achieved a throughputof 17.55
Gbits/sec through the use of the Xilinx run-time
reconfiguration softwareapplication JBitsTM which allowed
for real time key-specific compilation of thebit-stream used
to program the FPGA [Patterson 2000a]. This run-time
reconfiguration resulted in a smaller and faster design (which
operated at 137.15 MHz)as compared to the design in of

International Journal of Optimal Research in Science and Technology (IJORST)

Volume 2, Issue 1, June 2017

www.ijorst.com Page 109

Elbirt and Paar(which operated at 37.97MHz). When
implemented using an FPGA from the Altera Flex 10KA
Family, theSerpent algorithm achieved a maximum
throughput of 301 Mbits/sec however, it is important to note
that this implementation implements 8 of the Serpent's
algorithm thirty two rounds whilethe implementations by
Elbirt and PaarandPatterson implement allthe rounds of the
Serpent algorithm. Note that all of the presented
throughputvalues are for non-feedback modes of
operation.Multiple implementations of Rijndael, the AES,
have been presented using bothXilinx and Altera FPGAs.The
implementation in by McLoone and McCannyachieves a
throughputof 6.956 Gbits/sec using a Xilinx Virtex-E
XCV3200E-8. Utilizing ROM to implement the Rijndael
Byte-Sub operation resulted in a significant increase in
through-put and decrease in area as compared to
implementations in Dandalisat theexpense of BRAM Blocks
which the previous implementations did not use.
Whentargeting the more advanced Altera APEX20KE200-1,
Rijndael implementationsachieved throughputs ranging from
570 Mbits/sec to 964 Mbits/sec. depending on the
implementation methodology. Four recent implementations
are also worth mentioning. The implementations achieve
throughput rates of11.8 and 17.8 Gbits/s, respectively. These
throughputs are only achieved throughpipelining and thus are
not suitable for feedback modes of operation. Notice that
JÄarvinen achieve such high throughputs for a 128-bit key
Rijndael implementation. The work presented in Standaert et
al. is also interesting because it compares different
implementation options (Look-up table
basedimplementations, RAM-based implementations, and
composite field implementations) and proposed some
heuristics to evaluate the hardware efficiency at
differentsteps of the design process which result on
particularly efficient implementations.Finally, we include the
work presented in Chodowiec and Gaj as its targetis the
implementation of a resource efficient AES core on FPGAs.
Such work hasnot been considered extensively in the
literature (usually designs are optimized forspeed rather than
area when targeting FPGAs). In addition, they proposed a
newway of implementing the MixColumns and
InvMixColumns transformations whichreduces area and
might be interesting in its own right. This work achieves data
streams of 150 Mbits/sec for encryption and decryption ona
low-cost Xilinx Spartan II FPGA using 222 slices and 3
BRAMs.

V CONCLUSION

We analyzed possible attacks against the use of FPGA in

security applications. Black box attacks do not seem to be
feasible for state-of-the-art FPGAs. However, it seems very
likely for an attacker to get the secret information stored in a
FPGA, when combining readback and fault injection attacks.
Cloning of SRAM FPGA and reverse engineering depend on
the specifics of the system under attack, and they will
probably involve a lot of effort, but this does not seem
entirely impossible. Physical attacks against FPGAs are very
complex due to the physical properties of the semiconductors
in the case of flash/SRAM/EEPROM FPGAs and the small
size of AF cells. It appears that such attacks are even harder

than analogous attacks against ASICs. Even though FPGA
have different internal structures than ASICs with the same
functionality, we believe that side-channel attacks against
FPGAs, in particular power-analysis attacks, will be feasible
too.AES have been thoroughly investigated and different
approaches to implementations exposed in the context of
embedded systems.

While, the art of cryptographic algorithm implementation
is reaching maturity, FPGAs as a security platform are hot
topic for security applications. FPGA in a secure
environment, for instance, be a box with tamper sensors
which triggers what is called ‘zeroization’ of cryptographic
keys, when an attack is being detected.

REFERENCES

[1] Actel Corporation. 2002. Design Security in
 Nonvolatile Flash and Antifuse. Available at
 http://www.actel.com.
[2] Agrawal, D., Archambeault, B., Rao, J. R., and
 Rohatgi P.2002. The EM Side Channel(s) In Workshop
 on CryptographicHardware and Embedded Systems.
[3] Ajluni, C. 1995. Two New Imaging Techniques to
 Improve ICDefect Identification. Electronic Design
 43, 14 (July), 3738.
[4] Algotronix Ltd. Method and Apparatus for Secure
 Configuration of a Field Programmable Gate Array
 PCTPatent Application 04988.
[5] Altera Corporation 2000. Nios Soft Core Embedded
 Processor Altera Corporation.
[6] Altera Corporation 2002a. Excalibur Device Overview,
 Altera Corporation. Av. http://www.altera.com.
[7] Altera Corporation 2002b. Stratix FPGA Family,Altera
 Corporation.Av.at http://www.altera.com.
[8] American National Standards Institute 1998. ANSI
 X9.52-998,Triple Data Encryption Algorithm Modes
 ofOperation.American National Standards Institute.
 http://webstore.ansi.org/.
[9] Amphion. High Performance AES Encryption
 Cores.http://www.chipcenter.com/networking.
[10] Anderson, R. and Kuhn, M. 1997. Low Cost Attacks
 OnTamper Resistant Devices.In 5thInternational
 Workshop onSecurity Protocols,B. Christianson, B.
Crispo, T. M. A. Lomas and M. Roe, Eds. Vol. LNCS

 [11] ANSI. 1981. American National Standards Data
 E ncryptionAlgorithm X3.92-1981. American
 National Standards Association.

[12] Aplan, J. M., Eaton, D. D., and Chan, A. K. 1999
 SecurityAntifuse that Prevents Readout of some but
 not otherInformation from a Programmed Field
 Programmable GateArray.United States Patent,
 Patent Number 5898776.

Amit Kumar,ME Student, Sahyadri Valley College of Engineering, Pune
University.
Manoj Kumar,Head, E&TC Dept., Sahyadri Valley College of Engineering,
Pune University.
P. Balramudu, Sahyadri Valley College of Engineering, Pune University.

	I. INTRODUCTION

