
International Journal of Optimal Research in Science and Technology (IJORST) 

Volume 1, Issue 1, July 2017 
 

www.ijorst.com Page 122 
 

Design of Differential Latency Hypothetical Han 

Carlson Adder 

Miss. Suvarna Dilip Shekade, Mr. Manoj Kumar Singh, Mr. Balramudu P.
 

 

Abstract— In this paper we have proposed hypothetical Han-

Carlson adder. The proposed adder employs hypothecation: 

the exact arithmetic function is replaced with an approximated 

one that is faster and gives the correct result most of the time. 

The approximated adder is augmented with an error detection 

network that asserts an error signal when speculation fails. 

The hypothetical adder to reduce delay and power 

consumption compared to non-hypothetical adders. The paper 

describe the stages in which differential latency hypothetical 

prefix adder can be subdivided and presents a novel error 

detection network that reduces error probability compared to 

previous approaches .  

Index Terms—Addition, digital arithmetic, parallel-prefix 

adders, hypothetical adders, hypothetical functional units, 

variable latency adders. 

I. INTRODUCTION 

Adders are basic functional units in computer arithmetic. 

Binary adders are used in microprocessor for addition and 

subtraction operations as well as for floating point 

multiplication and division. Therefore adders are 

fundamental components and improving their performance 

is one of the major challenges in digital designs. Theoretical 

research [1] has established lower bounds on area and delay 

of -bit adders: the former varies linearly with adder size, 

the latter has a   behavior. 

       we proposed a novel differential latency hypothetical 

adder based on Han-Carlson [3] parallel-prefix topology. 

The Han-Carlson topology uses one more stage than Kogge-

Stone adder, while requiring a reduced number of cells and 

simplified wiring. Thus, it can achieve similar speed 

performance compared to Kogge-Stone adder, at lower 

power consumption and area [8].  
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We show that a hypothetical carry tree can be obtained by 

pruning some intermediate levels of the classical Han-

Carlson topology. we presents a rigorous derivation of the 

error detection network and shows that the error detection 

network required in hypothetical Han-Carlson adders is 

significantly faster than the one used by speculative Kogge -

Stone architecture. An extensive set of implementation 

results for 65 nm CMOS technology shows that proposed 

Han-Carlson differential latency adders outperform 

previously developed differential latency Kogge-Stone 

architectures. Compared with traditional, non-speculative, 

adders, our analysis demonstrates that variable latency Han-

Carlson adders show sensible improvements when the 

highest speed is required; otherwise the burden imposed by 

error detection and error correction stages overwhelms any 

advantage. 

 
II. DIFFERNTIAL LATENCY HYPOTHETICAL PREFIX ADDERS 

Differential latency hypothetical prefix adders can be    
subdivided in five stages: pre-processing, hypothetical 

prefix-processing, post-processing, error detection and 

error correction.  

 
 

Fig. 1 Block Diagram 

  

A. Pre-Processing 

    In the pre-processing stage the generate  and propagate 

 signals are computed. 

Gi= a and b & 

                                      Pi= a xor b 
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  B. Hypothetical Prefix-Processing 

The hypothetical prefix-processing stage is one of the main 

differences compared with the standard prefix adders 

recalled in previous section. Instead of computing all the 

g[i:0] and p[i:0] required in [8] to obtain the exact carry 

values, only a subset of block generate and propagate 

signals is calculated; in the post-processing stage 

approximate carry values are obtained from this subset. 

The output of the hypothetical prefix-processing stage will 

also be used in the error detection and in the error 

correction stages discussed in the following. 

The basic assumption behind hypothetical prefix-

processing stage is that carry signals propagate for  no 

more than K bits, with K<n and K=0(log2(n)).This 

assumption is corroborated by the analyses in [5],[6] that 

demonstrate that having a propagate chain longer that 

log2(n) is a very rare event. 

1) Kogge-Stone Topology:  

    The Kogge-Stone speculative prefix-processing stage has 

been proposed in [4],[5] and can be obtained by pruning the 

last levels of a traditional Kogge-Stone adder. In the 

example shown in Fig. 2, the last level of a n=16 bit Kogge-

Stone adder is pruned. As it can be observed, for i≥8 the 

length of propagate chains extends for  8 bits, resulting in a 

speculative prefix-processing stage with  K=8. . 

In general, one has K=n/2
P
, where P is the number of pruned    

levels; the number of levels of the speculative stage is 

correspondingly reduced from log2(n) to log2(K)  (assuming 

that K is a power of two). 

 In general, the computed propagate and generate signals for 

the speculative Kogge-Stone architecture are: 

      (g,p)[i:0]             for: i≤ K-1 

      (g,p)[i:i-k+1]        otherwise                                       (1) 

2) Han-Carlson Topology:  

   Han-Carlson adder constitutes a good trade-off between 

fanout, number of logic levels and number of black cells. 

Because of this, Han-Carlson adder can achieve equal speed 

performance respect to Kogge-Stone adder, at lower power 

consumption and area [8]. Therefore it is interesting to 

implement a hypothetical Han-Carlson adder. Moved by 

these reasons, we have generated a Han-Carlson 

hypothetical prefix-processing stage by deleting the last 

rows of the Kogge-Stone part of the adder. As an example, 

the Fig. 3 shows the Han-Carlson adder in which the two 

Brent-Kung rows at the beginning and at the end of the 

graph are unchanged, while the last Kogge-Stone row is 

pruned. This yields a speculative stage with K=8=n/2. In 

general, one has K=n/2
P
, where P is the number of pruned 

levels: the number of levels of hypothetical Han-Carlson 

stage reduces from 1+log2 (n) + log2 (K) (assuming that K is 

a power of two). 

As it can be observed in Fig. 2, the length of the 

propagate chains is K=8 only for i = 9,11,13,15, while for i 

= 10, 12, 14 the propagate chain length is K+1=9 . 

In general, the computed propagate and generate signals for 

the hypothetical Han-Carlson architecture are: 

           (g,p)[i:0]                   for: i ≤ k 

          (g,p)[i:i-K+1]                for: i > k, i odd 

          (g, p)[i: i-K]                   for: i > k, i even                  (2) 

 

               Fig. 2. Han-Carlson hypothetical prefix-processing stage.  

 

          As it will be apparent in the following, having the 

propagate lengths equal to for half of the outputs greatly 

simplifies the error detection. 

C. Post-Processing 

In the post-processing stage we firstly compute the 

approximate carries, ci, and then use them to obtain the 

approximate sum bits as follows: 

              Si = pi + ci-1 

 

                                                                                            (3) 

D. Error Detection 

The conditions in which at least one of the approximate 

carries is wrong (misprediction) are signaled by the error 

detection stage. In case of misprediction, an error signal is 

asserted by error detection stage and the output of the post-

processing stage is discarded. The error correction stage will 

give the correct sum in the next clock period. 

1) Kogge-Stone: The error condition for carry can be    

obtained from (2),(3) and using the properties of propagate 

generate signals as: 

 

      ei = 0                              for: i≤K-1 
        p[i:i-K+1]g[i-K:0]          otherwise                       (4) 

Thus, the error signal can be expressed as:  

outputs are needed to compute the error signal, are named 

“checking nodes” and are highlighted as big hatched dots, 

for the topologies in Fig. 3. 

       



International Journal of Optimal Research in Science and Technology (IJORST) 

Volume 1, Issue 1, July 2017 
 

www.ijorst.com Page 124 
 

         n-1 

 Eks = ∑ p[i:i-k+1]g[i-k:0]                                           (5) 

         i=K  

 

   Where the ∑ represents the logical OR. 
 

 

Fig. 3. The nodes of the prefix-processing stage, whose  

It is important to note that above equation is a necessary 

and sufficient error condition that requires the calculation 

of g[i-k:0].Unfortunately, these terms are actually not 

computed by the hypothetical prefix-processing stage 

(avoiding the computation of these terms is the key idea of 

speculative adders). Thus, in previous papers,(5) is 

replaced by the following looser relation: 

         n-1 

Eks = ∑ p[i:i-k+1]                                                       (6) 

         i=K 

The last equation is a necessary-only error condition. By 

using above, the error signal can be triggered even in 

absence of actual misprediction. While this does not harm 

the correct operation of the hypothetical adder, having an 

high rate of such “false positive” errors degrades the 

average addition time (1).In this paper, instead, we rewrite 

the necessary and sufficient condition 1   in a form that 

does not require the g[i-K:0] terms. To that purpose, let us 

consider the last two terms of the OR in (1), with index n-1 

and n-2: finally one obtained 

      (7) 

2) Han-Carlson: The error condition for carry  can be 

obtained from equation (3) and ci= g[i:0]  

       

        (8) 

 The error signal can be written 

      (9) 

  It can easily be seen that in(9)  the terms in the 

Second OR are implied by the terms in the first OR. 

Let us consider, for instances, the first two terms of the OR 

assume that K is even 

We have:  

  

 (10) 

Thus we can write 

      (11) 

Similar simplifications can be realized by considering in 

above eq the terms n-3 and n-5 and so on. Finally one 

obtains 

   (12) 

 

From the above observations, it can be concluded that error 

detection is sensibly simplified and potentially faster in 

Han-Carlson. Compared to Kogge stone. 

The need of driving the gates of the error detection stage 

increases the fanout of the checking cells, slowing the 

speculative prefix-processing stage. 

     

  E. Error Correction 

 The error correction stage computes the exact carry signals 

ci = g[i,0], to be used in case of misprediction. 

    The error correction stage is composed by the levels of 

the prefix-processing stage pruned to obtain the hypothetical 

adder. The Fig. 5 shows the error correction stage of the 

proposed hypothetical Han-Carlson adder; the error 

correction for Kogge-Stone topology can be obtained 

similarly. 

     It can be observed that the inclusion of the error 

correction stage increases the fanout of some of the cells of 

the hypothetical prefix-processing stage, with adverse effect 

on adder speed. 
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 Fig. 4. Error correction and detection stages for the proposed   hypothetical  

Han-Carlson adder of Fig. 3. 

 

  F. Post-Processing 

The approximate carries are already available at the output 

of the prefix-processing stage. The post-processing, 

according to (14), is equal to the one of a non-hypothetical 

adder and consists of xor gates. 

III. SIMULATION RESULTS 

     To investigate the advantages of using our technique in 

terms of area overhead against “Fully ECC” and against the 

partially protection, we implemented and synthesized for a 

Xilinx XC3S500E different versions of a32-bit, 32-entry, 

dual read ports, single write port register file. Once the 

functional verification is done, the RTL model is taken to 

the synthesis process using the Xilinx ISE tool. In synthesis 

process, the RTL model will be converted to the gate level 

net list mapped to a specific technology library. Here in this 

Spartan 3E family, many different devices were available in 

the Xilinx ISE tool. In order to synthesis this design the 

device named as “XC3S500E” has been chosen and the 

package as “FG320” with the device speed such as “-4”. 

 

  

 

Fig 5: Internal block Han-Carlson Adder 

 

 

Figure 6: RTL schematic of Top-level Han-Carlson Adder 
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Figure 7: RTL schematic of Internal block  Han-Carlson 

Adder 

 

 

Figure 8: Simulated output for Han-Carlson Adder 

 

IV. CONCLUSION 

From the above work, it is seen that the Han-Carlson adder 

presented a reduction in the complexity and hence provides 

a tradeoffs for the construction of large adders. These wide 

adders are useful in applications like cryptography for 

security purpose, global unique identifiers used as a 

identifier in computer software and this wide adder also 

provides good speed. 
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